Transforms#
This section describes the configurations for various torch_geometric.transforms.Transforms
objects used throughout the frame.
Note
These are typically not used in the CLI - they are rather primitives that we use in defining Tasks.
See also
None#
This config file is used to specify no transforms.
Data Transforms#
These transforms are used to modify the input data in some way, such as handling edge cases.
Remove Missing \(C_{\alpha}\) Atoms#
remove_missing_ca:
_target_: proteinworkshop.tasks.remove_missing_ca.RemoveMissingCa
fill_value: 1e-5 # Value used to indicate missing atoms
ca_idx: 1 # Index of CA atoms in the AtomTensor
Generic Task Transforms#
Binding Site Prediction#
Protein Protein Site Prediction#
ppi_site_prediction:
_target_: proteinworkshop.tasks.ppi_site_prediction.BindingSiteTransform
radius: 3.5 #Maximum distance between chains to be considered as interacting
ca_only: False #Whether to use only the alpha carbon atoms for determining interactions
Denoising Transforms#
Sequence Denoising#
sequence_denoising:
_target_: proteinworkshop.tasks.sequence_denoising.SequenceNoiseTransform
corruption_rate: 0.25 # Fraction of residues to corrupt
corruption_strategy: "mutate" # Whether to 'mutate' or 'mask'
Structure Denoising#
structure_denoising:
_target_: proteinworkshop.tasks.structural_denoising.StructuralNoiseTransform
corruption_rate: 0.1 # How much noise to apply
corruption_strategy: "gaussian" # Whether to use a 'gaussian' or 'uniform' distribution
Torsional Denoising#
torsional_denoising:
_target_: proteinworkshop.tasks.torsional_denoising.TorsionalNoiseTransform
corruption_rate: 0.1 # How much noise to apply
corruption_strategy: "gaussian" # Whether to use a 'gaussian' or 'uniform' distribution