Metrics#
Accuracy#
accuracy:
_target_: torchmetrics.Accuracy
task: ${task.classification_type}
average: ${task.metric_average}
num_classes: ${dataset.num_classes}
top_k: 1
AUPRC#
auprc:
_target_: proteinworkshop.metrics.auprc.AUPRC
F1 Max#
f1_max:
_target_: proteinworkshop.metrics.f1_max.F1Max
num_classes: ${dataset.num_classes} # set the number of classes if necessary
F1 Score#
f1_score:
_target_: torchmetrics.F1Score
average: "macro"
num_classes: ${dataset.num_classes} # set the number of classes if necessary
task: ${task.classification_type}
MAE#
mae:
_target_: torchmetrics.MeanAbsoluteError
MSE#
mse:
_target_: torchmetrics.MeanSquaredError
Perplexity#
perplexity:
_target_: torchmetrics.Perplexity
ignore_index: -100
RMSE#
rmse:
_target_: torchmetrics.MeanSquaredError
squared: False
ROCAUC#
rocauc:
_target_: torchmetrics.AUROC
task: ${task.classification_type}
average: ${task.metric_average}
num_classes: ${dataset.num_classes}